Abstract
Impedance pneumography has been suggested as an ambulatory technique for the monitoring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to noise sources. It is important that such noisy segments are identified and removed, since they could have a huge impact on the performance of data-driven decision support tools. In this study, we investigated the added value of machine learning algorithms to separate clean from noisy bio-impedance signals. We compared three approaches: a heuristic algorithm, a feature-based classification model (SVM) and a convolutional neural network (CNN). The dataset consists of 47 chronic obstructive pulmonary disease patients who performed an inspiratory threshold loading protocol. During this protocol, their respiration was recorded with a bio-impedance device and a spirometer, which served as a gold standard. Four annotators scored the signals for the presence of artefacts, based on the reference signal. We have shown that the accuracy of both machine learning approaches (SVM: 87.77 ± 2.64% and CNN: 87.20 ± 2.78%) is significantly higher, compared to the heuristic approach (84.69 ± 2.32%). Moreover, no significant differences could be observed between the two machine learning approaches. The feature-based and neural network model obtained a respective AUC of % and %. These findings show that a data-driven approach could be beneficial for the task of artefact detection in respiratory thoracic bio-impedance signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.