Abstract

A novel quartz device has been designed to trap arsine and selenium hydride and subsequently to volatilize the collected analyte and atomize it for atomic-absorption spectrometric detection. The device is actually the multiple microflame quartz-tube atomizer (multiatomizer) with inlet arm modified to serve as the trap and to accommodate the oxygen-delivery capillary used to combust hydrogen during the trapping step. The effect of relevant experimental conditions (trap temperature during trapping and hydrogen flow rate and trap temperature during volatilization) on collection and volatilization efficiency was investigated. Under the optimum conditions collection and volatilization efficiency for arsenic and selenium were 50 and 70%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.