Abstract

Arsenic has been shown to inhibit methyl methane-sulphonate (MMS)-induced DNA repair but the exact mechanism remains controversial. The purpose of this investigation is to examine which step of DNA repair is most sensitive to arsenite (As) and how As inhibits it. The results from single-cell alkaline electrophoresis, showing post-treatment with As increased DNA strand breaks in MMS-treated cells, suggest that that the excision step seems to be less sensitive to As than later steps. To test this hypothesis, hydroxyurea (Hu) plus cytosine-beta-D-arabinofuranoside (AraC) were used to block DNA polymerization, allowing the DNA strand breaks to accumulate. These experiments indicated that As had weak inhibitory effects on DNA strand break accumulation. However, As inhibited the rejoining of those DNA strand breaks which could be rejoined within 4 h after release from blockage by Hu plus AraC. To further elucidate this mechanism, a cell extract was used to compare the relative sensitivity of the various steps in DNA repair to As. The potency of the As inhibitory effect as deduced from concentration-response curves were: ligation of poly(rA).oligo(dT) > ligation of poly(dA).oligo(dT) approximately DNA polymerization > or = DNA repair synthesis > excision. As is known to inhibit the activity of pyruvate dehydrogenase by interacting with vicinal dithiol groups. Dithiothreitol could effectively remove As inhibition of both the ligation of poly(rA).oligo(dT) and the activity of pyruvate dehydrogenase but had no obvious effect on As inhibition of poly(dA).oligo(dT) ligation. Since DNA ligase III contains vicinal dithiol groups, we postulate that As may inhibit DNA break rejoining by interacting with the vicinal dithiols to inactivate DNA ligation in MMS-treated cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call