Abstract

Arsenic is an effective therapeutic agent for the treatment of patients with refractory or relapsed acute promyelocytic leukemia. The use of arsenic for treating solid tumors, particularly in combination with other chemotherapeutic agents, has been extensively studied. Here, we report that arsenite-resistant human lung cancer CL3R15 cells constitutively overexpress NAD(P)H quinone oxidoreductase 1 (NQO1), an enzyme responsible for activation of mitomycin C (MMC), and are more susceptible to MMC cytotoxicity than parental CL3 cells. The effects of arsenite pretreatment on NQO1 induction were examined in CL3, H1299, H460, and MC-T2 cells. Arsenite pretreatment significantly enhanced the expression of NQO1 and susceptibility to MMC in CL3, H1299, and MC-T2 cells, but not in H460 cells that express high endogenous levels of NQO1. Alternatively, arsenic pretreatment reduced adriamycin sensitivity of CL3 cells. Arsenite-mediated MMC susceptibility was abrogated by dicumarol (DIC), an NQO1 inhibitor, indicating that NQO1 is one of the key regulators of arsenite-mediated MMC susceptibility. Various cancer cell lines showed different basal levels of NQO1 activity and a different capacity for NQO1 induction in response to arsenite treatment. However, overall, there was a positive correlation between induced NQO1 activity and MMC susceptibility in cells pretreated with various doses of arsenite. These results suggest that arsenite may increase NQO1 activity and thus enhance the antineoplastic activity of MMC. In addition, our results also showed that inhibition of NQO1 activity by DIC reversed the arsenite resistance of CL3R15 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call