Abstract

Arsenite (As(III)) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (As(V)). As(III) oxidation by Mn(IV)-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During As(III) oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that Mn(II) sorption on a poorly crystalline hexagonal birnessite (δ-MnO₂) is important in passivation early during reaction with As(III). Also, it appears that Mn(III) in the δ-MnO₂ structure is formed by conproportionation of sorbed Mn(II) and Mn(IV) in the mineral structure. The content of Mn(III) within the δ-MnO₂ structure appears to increase as the reaction proceeds. Binding of As(V) to δ-MnO₂ also changes as Mn(III) becomes more prominent in the δ-MnO ₂ structure. The data presented indicate that As(III) oxidation and As(V) sorption by poorly crystalline δ-MnO₂ is greatly affected by Mn oxidation state in the δ-MnO₂ structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call