Abstract

Arsenic is a well-known carcinogen for human skin, but its mechanism of action and proximal macromolecular targets remain to be elucidated. In the present study, low micromolar concentrations of sodium arsenite maintained the proliferative potential of epidermal keratinocytes, decreasing their exit from the germinative compartment under conditions that promote differentiation of untreated cells. This effect was observed in suspension and in post-confluent surface cultures as measured by colony-forming ability and by proportion of rapidly adhering colony-forming cells. Arsenite-treated cultures exhibited elevated levels of β1-integrin and β-catenin, two proteins enriched in cells with high proliferative potential. Levels of phosphorylated (inactive) glycogen synthase kinase 3β were higher in the treated cultures, likely accounting for the increased levels of transcriptionally available β-catenin. These findings suggest that arsenic could have co-carcinogenic and tumor co-promoting activities in the epidermis as a result of increasing the population and persistence of germinative cells targeted by tumor initiators and promoters. These findings also identify a critical signal transduction pathway meriting further exploration in pursuit of this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call