Abstract

Arsenite (As+3) is a group one human carcinogen, which has been associated with many diseases. Previous studies indicated that As+3 could inhibit wound healing and repair. M2a cells are known as tissue remodeling macrophages, which play an important role in wound repair process. Peroxisome proliferator-activated receptor gamma (PPAR-γ), a key regulator of lipid and glucose metabolism, was found to mediate the IL-4-dependent M2a polarization of macrophages. In the present study, As+3 induced dose-dependent inhibition of M2a polarization starting from 0.1 μM in THP-1-derived macrophages stimulated with 20 ng/mL IL-4. Increased lipid accumulation and decreased PPAR-γ expression were also observed in As+3-treated M2a macrophages. Rosiglitazone (RSG), a potent PPAR-γ agonist, alleviated the suppressions of PPAR-γ and M2a polarization induced by 2 μM As+3. Collectively, these results not only demonstrated that As+3 was able to inhibit polarization of M2a cells through PPAR-γ suppression, but also indicated that PPAR-γ could be utilized as a target for the prevention and treatment of As+3-induced immunotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call