Abstract

Battery grade γ-MnO2 powder was investigated as an oxidant and an adsorbent in combination with Fe/Al coagulants for removal of arsenic from contaminated water. Simultaneous oxidation of As(III) and removal by coprecipitation/adsorption (one step process) was compared with pre-oxidation and subsequent removal by coprecipitation/adsorption (two step process). The rate of As(III) oxidation with MnO2 is completed in two stages: rapid initially followed by a first order reaction. As(III) is oxidised to As(V) by the MnO2 with a release of approximately 1:1 molar Mn(II) into the solution. No significant pH effect on oxidation of As(III) was observed in the pH range 4 - 6. The rate showed a decreasing trend above pH 6. The removal of As(V) by adsorption on the MnO2 decreased significantly with increasing pH from 4 to 8. The adsorption capacity of the γ-MnO2 with particle size 90% passing 10 µm was determined to be 1.5 mg/g at pH 7. MnO2 was found to be more effective as an oxidant for As(III) in the two step process than in the one step process.

Highlights

  • Arsenic in contaminated groundwater occurs largely as arsenite (As(III)). [1] Effective and complete removal of arsenic by adsorption/coprecipitation methods requires pre-oxidation of As(III) to As(V)

  • Chen and Fang [28] reported that the oxidation rate of As(III) by MnO2 was rapid initially followed by a firstorder kinetics with respect to As(III) concentration

  • This paper reports the investigation of MnO2 as an oxidant for As(III) and as adsorbent in combination with Fe/Al coagulants for As(V) removal

Read more

Summary

Introduction

Arsenic in contaminated groundwater occurs largely as arsenite (As(III)). [1] Effective and complete removal of arsenic by adsorption/coprecipitation methods requires pre-oxidation of As(III) to As(V). Oxygen or air is a cheap but kinetically slow oxidant for As(III). Various other oxidants for As(III) have been reported in the literature, including permanganate ( MnO4 ), [2,3,4] ozone (O3), [5] hydrogen peroxide (H2O2), [6] chlorine (Cl2), [7,8,9,10] or hypochlorite (ClO−), [11,12,13] catalyzed sulphite/O2 (air) mixture, [14,15] and UV catalyzed systems. The oxidation process was reported to be limited by diffusion of the reactant As(III) to or the reaction products away from the surface [27,28,29]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.