Abstract

Solution chemical techniques were used to investigate the oxidation of As(III) to As(V) in 0.011 M arsenite suspension of well-crystallized hexagonal birnessite (H-birnessite, 2.7 g L(-1)) at pH 5. Products of the reaction were studied by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), atomic force microscopy (AFM), and X-ray absorption near-edge structure spectroscopy (XANES). In the initial stage (first 74 h), chemical results have been interpreted quantitatively, and the reaction is shown to proceed in two steps as suggested by previous authors: 2>Mn(IV)O2 + H3AsO3 + H2O --> 2>Mn(III)OOH + H2AsO4- + H+ and 2>Mn(III)OOH + H3AsO3 + 3H+ --> 2Mn2+ + H2AsO4- + 2H2O. The As(III) depletion rate was lower (0.02 h(-1)) than measured in previous studies because of the high crystallinity of the H-birnessite sample used in this study. The surface reaction sites are likely located on the edges of H-birnessite layers rather than on the basal planes. The ion activity product of Mn(II) and As(V) reached after 74 h reaction time was the solubility product of a protonated manganese arsenate, having a chemical composition close to that of krautite as identified by XANES and EDS. Krautite precipitation reaction can be written as follows: Mn2+ + H2AsO4- + H2O = MnHAsO4 x H2O + H+ log Ks approximately -0.2. Equilibrium was reached after 400 h. The manganese arsenate precipitate formed long fibers that aggregated at the surface of H-birnessite. The oxidation reaction transforms a toxic species, As(III), to a less toxic aqueous species, which further precipitates with Mn2+ as a mixed As-Mn solid characterized by a low solubility product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.