Abstract

Extensive researches have revealed that arsenical can exert anti-tumor efficacy against several kinds of cancers including leukemia. Though, little is known about the effects of arsenical on leukemia resistant to chemotherapy, emerging as a serious clinical problem. In this study, we tested arsenic trioxide (As 2O 3)-induced apoptosis in K562/ADM multidrug-resistant leukemic cells and investigated its possible mechanisms. Using microscopy, flow cytometry (FCM) and DNA electrophoresis, we found that As 2O 3 could induce the cells to undergo G2/M phase arrest and apoptosis. Further, it was shown that the levels of FAS and P53 proteins increased and P-glycoprotein (P-gp) decreased upon drug action by employing FCM. Reverse transcription polymerase chain reaction (RT-PCR) detected increased mRNA product of FAS and caspase-3 genes and reduced MDR1 mRNA. CASPASE-3 activity was also enhanced after As 2O 3 treatment. However, the expression of BCL-2 protein was not affected by the drug. Taken together, As 2O 3 is able to reverse the apoptosis resistance in drug-resistant K562/ADM cells by modulating expression or activity of key factors associated with apoptosis induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.