Abstract

Recently, Arsenic trioxide (ATO) has been reported as an efficient drug for suppression of cancer cell growth. Existing studies revealed the extensive involvement of microRNAs (miRNAs) in initiation and development of hepatocellular carcinoma (HCC). However, the potential correlation between ATO and miRNAs in HCC progression remains to be explored. To conduct our research, we applied a qRT-PCR analysis to find miRNAs that were upregulated in HCC cells treated with ATO. In our present study, miR-1294 was found to be significantly upregulated in ATO-treated HCC cells. To confirm the function of ATO and miR-1294 in HCC progression, gain-of function assays were designed and conducted. As expected, proliferative ability of ATO-treated HCC cells was markedly weakened compared to DMSO-treated HCC cells. More importantly, proliferation was further suppressed in ATO-induced HCC cells after overexpression of miR-1294. Through bioinformatics analysis, some potential targets of miR-1294 were predicted. Further investigation revealed that Pim-1 proto-oncogene (PIM1) and TEA domain transcription factor 1 (TEAD1) were two downstream targets of miR-1294 and could be negatively regulated by ATO. Functionally, we determined that cell proliferation and apoptosis resistance suppressed by miR-1294 and ATO were recovered by introduction of TEAD1 and PIM1. Collectively, this study revealed that a novel ATO-miR-1294-TEAD1/PIM1 axis regulated HCC cell growth, offering a potential insight into the HCC therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.