Abstract
Arsenic trioxide (ATO) is a highly toxic arsenical which has been successfully exploited for treating acute promyelocytic leukemia (APL). Unfortunately, its therapeutic efficacy is accompanied by serious toxicities with undeciphered mechanisms. Cytochrome P450 1A (CYP1A) enzymes undergo modulation by arsenicals, with ensuing critical consequences regarding drug clearance or procarcinogen activation. Here, we investigated the potential of ATO to alter basal and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1/1A2 expressions. Mouse-derived hepatoma Hepa-1c1c7 cells were exposed to 0.63, 1.25, and 2.5 μM ATO with or without 1 nM TCDD. ATO increased TCDD-induced CYP1A1/1A2 mRNA, protein, and activity. Constitutively, ATO induced Cyp1a1/1a2 transcripts and CYP1A2 protein. ATO increased AHR nuclear accumulation and subsequently increased XRE-luciferase reporter activity. ATO enhanced CYP1A1 mRNA and protein stabilities. In conclusion, ATO up-regulates CYP1A in Hepa-1c1c7 cells transcriptionally, post-transcriptionally, and post-translationally. Therefore, ATO can be implicated in clearance-related interactions with CYP1A1/1A2 substrates, or in excessive activation of environmental procarcinogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.