Abstract

The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cytotoxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α- and β-tubulin and inhibited the polymerization of tubulin. The antitumor action and quantitative tumor perfusion studies were carried out with locally advanced murine CT26 colon carcinoma grown in female BALB/c mice. A single injection of ATO intraperitoneally displayed central necrosis of the tumor tissue by 24 hours. T1-weighted dynamic contrast-enhanced magnetic resonance image revealed a significant decrease in tumor enhancement in the ATO-treated group. Similar to other VDAs, ATO treatment alone did not delay the progression of tumor growth; however, ATO treatment after injection of other cytotoxic agent (irinotecan) showed significant additive antitumor effect compared to control and irinotecan alone therapy. In summary, our data demonstrated that ATO acts as a VDA by means of microtubule depolymerization. It exhibits significant vascular shutdown activity in CT26 allograft model and enhances antitumor activity when used in combination with another cytotoxic chemotherapeutic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.