Abstract
During the past few years, advances in drag delivery have provided many opportunities in the treatment of various diseases and cancer. Arsenic trioxide (ATO) and Erlotinib (Erlo) are two drugs, approved by the United States Food and Drug Administration to treat cancer, but their use is limited in terms of the toxicity of ATO and the low solubility of Erlo. This study aimed to prepare arginine-glycine-aspartic acid (RGD)-decorated nanoliposomes (NLPs) containing Erlo and ATO (NLPs-ATO-Erlo-RGD) to increase the solubility and reduce the toxicity of Erlo and ATO for cancer treatment. The results of transmission electron microscopy and dynamic light scattering showed that NLPs were synthesized uniformly, with spherical shape morphology and particle sizes between 140 and 160nm. High-performance liquid chromatography and ICP-MS results showed that about 90% of the drug was loaded in the NLPs. In comparison with NLPs-ATO-Erlo, NLPs-ATO-Erlo-RGD demonstrated considerable toxicity against the αvβ3 overexpressing PC3 cell line in the MTT experiment. It had no effect on the PANC-1 cell line. In addition, apoptosis assays using Annexin V/PI demonstrated that NLPs-ATO-Erlo-RGD generated the highest apoptotic rates in PC3 cells when compared with NLPs-ATO-Erlo and the combination of free ATO and Erlo. Furthermore, treatment with NLPs-ATO-Erlo-RGD in (p<0.05) PC3 cell line significantly reduced EGFR level. It is concluded NLPs-ATO-Erlo-RGD as a novel drug delivery system may be a promising platform for the treatment of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.