Abstract

Synchrotron radiation X-ray fluorescence (SR-XRF) was used to characterize As speciation within natural fluid inclusions from three deposits with different hydrogeochemical and geological settings. The studied samples represent different compositions of Au-bearing fluids: typical orogenic Au deposit (low-salinity, ~6 mol% CO2 ± CH4; Brusson, Western Italian Alps); brines from a Proterozoic (Fe)- Cu-Au deposit (Starra, Queensland, Australia); and an As-rich magmatic fluid with a bulk composition similar to that typical of orogenic gold (Muiane pegmatite, Mozambique). Arsenic K-edge X-ray absorption spectra (XAS) were obtained from fluid inclusions at temperatures ranging from 25 to 200°C, and compared with spectra of aqueous As(III) and As(V) solutions and minerals. X-ray absorption near edge structure (XANES) data show that initially the fluid inclusions from all three regions contain some As in reduced form [As(III) at Brusson and Muiane; As-sulfide or possibly As(0) at Starra]. However, this reduced As is readily oxidized under the beam to As(V). Therefore, extended X-ray absorption fine structure (EXAFS) spectra for the As(III) aqueous complex could be collected only on the sample from the Muiane pegmatite containing large fluid inclusions with high As concentrations (>>1000 ppm). Analysis of these EXAFS data shows that As(OH)3(aq) (coordination number of 3.0 ± 0.2 atoms, bond length of 1.76 ± 0.01 Å) is the dominant arsenic aqueous species in the Muiane fluid inclusions at 100 °C, in accordance with predictions based on studies conducted using autoclaves. The As(V) complex resulting from photooxidation in the Muiane inclusions was characterized at 200 °C; the As-O bond distance (1.711 ± 0.025 Å) corresponds to that found in the arsenate group in minerals, and to that measured for the (HAsO4)2- complex at room temperature (1.700 ± 0.023 Å).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call