Abstract

A laboratory incubation experiment was conducted to investigate the influence of organic matter content on arsenic speciation and mobilization in chromated copper arsenate (CCA)-contaminated soils. The study was performed with four synthetic CCA-contaminated soils, with a range of organic matter content (mixture of peat moss and poultry manure) varying between 0.5% and 15% (w/w), under unsaturated and aerobic conditions for 40 days. Changes in water-soluble arsenic speciation (As(V), As(III), MMAA, DMAA) were monitored over time in soil extracts by HPLC-ICP-MS and in the soil solid phase (As(III), As(V)) by a solvent extraction method. Irrespective of organic matter content, As(V) was the predominant soil bound and aqueous phase arsenic species. However, over 40 days, a high soil organic matter content (7.5% and 15%) was able to entail formation of soil bound As(III). Moreover, total water-soluble arsenic was positively correlated with dissolved organic carbon ( r 2 = 0.88). However, the organic matter content did not influence arsenic speciation in the soluble fraction; neither As(V) reduction nor arsenic biomethylation occurred within 40 days. An increase in dissolved organic carbon content promoted both As(V) and As(III) solubilization in soils. Also, over time, organic matter contents of 7.5% and 15% entailed the persistence of soluble As(V), likely due to the high content of dissolved organic compounds which prevented its sorption onto soil. Based on this data, the environmental risk of aerobic CCA-contaminated soils rich in organic matter may be due to an enhanced availability of soluble As(V) over time, rather than to the formation of the more toxic and more mobile As(III).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.