Abstract

In this study, the arsenic (As) removal characteristics of a Mn-Fe binary coating formed on waste sand filter of an acid mine drainage treatment facility are investigated. Owing to the Mn-Fe binary coating forming on the surfaces of the sand grains, its potential for arsenic removal, particularly As(III), was evaluated and characterized through batch experiments and x-ray absorption spectroscopy. Sorption isotherms reveal that the Mn-Fe binary coating exhibits comparable removal efficiencies for As(III) and As(V) under low initial As concentrations. However, at higher initial As(III) and As(V) concentrations, the As(III) removal efficiency increases because of newly formed active adsorption sites from reductive dissolution of Mn. The oxidation of the As(III) and reduction of the Mn oxide phases are verified through As K-edge and Mn K-edge X-ray absorption near edge fine structure analysis. The outstanding As(III) removal efficiency of the Mn-Fe binary coating suggests synergy of Fe- and Mn-oxides, highlighting a potential application for this coating system. The natural formation of binary coating through acid mine drainage treatment reported in this study indicates that similar coating can form naturally in other environments, thus, providing plausible natural attenuation processes for arsenic immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.