Abstract

The behavior of ultra shallow ion implants of arsenic in Si following solid phase epitaxial re-growth process is reported. A 16 nm amorphous layer was created by ion implantation of Si+ at energy 5 keV and a dose 1×1015 at/cm2. As ion were implanted at 2 keV using 3 different doses: 1×1014, 5×1014 and 1×1015 at/cm2. The resulting As distributions, confined in the amorphous layer, were thermally treated at 550°C for 5-300 s in order to electrically activate dopant atoms. Crystal re-growth and As redistribution was investigated by secondary ion mass spectrometry and medium energy ion scattering. A growth rate depending on the As concentration was observed, the rate being slower for higher As content. Arsenic re-distribution to the surface and at the end-of-range defects was observed and a segregation model was developed. Finally, the substitutional fraction of As atoms was related to sheet resistance measurements revealing a higher fraction of electrically active dopant atoms in pre-amorphized samples compared to not pre-amorphized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.