Abstract

Arsenic (As) is one of the most investigated elements worldwide due to its negative impact on the natural system. Its geochemical behavior depends on several geogenic processes, which can cause hazardous enrichment into natural waters, even in remote areas, far from anthropogenic sources. In this work the arsenic pollution issue has been addressed by studying water-rock interaction processes and applying reaction path modelling as a tool to understand the rock-to-water release of As and the fate of this natural pollutant in crystalline aquifers. In-depth geochemical characterization of several water samples discharging from crystalline aquifers was performed. The obtained data were used to fix the boundary conditions and validate the modelling outcomes. The performed modelling allowed to reconstruct the water-rock interaction processes which occur (i) in shallow and relatively shallow crystalline aquifers in which no As anomalies were observed and (ii) in As-rich areas, coupling reaction path modelling of granite dissolution with adsorption of dissolved As onto precipitating crystalline and amorphous Fe(III)-oxyhydroxides given the widespread presence of these phases in the studied environment. The results of the geochemical modelling are in agreement with the analytical data and reproduce them satisfactorily. The performed geochemical modelling is of high environmental significance because it is a flexible and powerful tool that correctly defines the water-rock interaction processes occurring in crystalline aquifers, providing valuable data to improve the knowledge on As behavior, not only in the study area, but also in similar geological settings worldwide. Therefore, the present research has broad future perspectives in the environmental field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.