Abstract

In the plasma doping (PLAD) process studied, Si(100) wafers were exposed to an As containing plasma and pulse biased to between 4 and 10 kV to ion fluences of 1x1016 cm−2. Medium energy ion scattering (MEIS) analysis was applied after i) the PLAD implant, ii) two types of wet chemical clean and iii) spike annealing to 1000oC, to determine quantitative depth profiles of As, Si and O and retained As dose at each stage.Following PLAD at a 7 kV bias, MEIS showed the formation of an intermixed Si/As layer which decayed almost linearly from a ~40% As fraction directly under a 1.2 nm thick surface oxide to near-zero over a depth of ~17 nm. A non-oxidizing wet clean is shown to etch away 7 nm of the mixed layer, stopping at a Si concentration of 4x1022 cm3 and remove around 80% of the implanted As. Concentration depth profiles of As visible to the beam in both random and aligned lattice directions, yielded the substitutional As profile and retained As dose of 8x1014 cm−2. This dose is shown to be strongly bias voltage (implant energy) dependent, giving a ~10-fold increase going from 4 to 10 kV.The application of an industry standard SPM wet clean on the other hand, produced a 13.5 nm thick surface oxide overlaying the retained As implant and, after annealing a substitutional As depth profile with a concentration of 1x1021 cm−3 over a depth greater than 10 nm. This gives a substitutional As dose of 1.35x1015 cm−2 which represents a 70 % increase on that measured after a non-oxydizing chemical wet clean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.