Abstract
Arsenic contamination in water has threatened lives globally. The capability of arsenic to interact with the sulfhydryl group of amino acids in human body is considered as one of the factors leading to its increased toxicity and there is the dire need for development of better detection platforms. In this study, advantage of natural biomimetic interaction between thiol rich ligands and arsenic ions along with the effect of nanoarchitecture was evaluated by fabricating a heterostructural bioreceptor probe which interacts with arsenic based on affinity interaction to bring about a visual colorimetric response via plasmon coupling. As (III) ions can bind to these selective ligands and self-assemble to form gold nanoparticle networks. The mesh-like nanoarchitecture enhances the available surface area for interaction between selective bioreceptor heads and As (III) ions. The developed chemoprobe was validated by assessing the spiked real water samples with recoveries of 95–103%. The results indicate that the chemical nanoprobe was responsive over a wide linear range of 1 to 200 μg L−1, offering the detection limit of 0.22 μg L−1 and selective for As (III) ions in a presence of 10 times more concentrated solution of the competing ions which indicates at the potential of nano-architecture in improving current detection systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.