Abstract

Impact of arsenic (As) contaminated groundwater on human health, through drinking and irrigation practices, is of grave-concern worldwide. This paper present the review of various sources, processes, health effects and treatment technologies available for the removal of As from arsenic contaminated water. Groundwater with high As concentration is detrimental to human health and incidents of As contamination in groundwater had been reported from different parts of the globe. More serious known As contamination problem as well as largest population at risk are found in Bangladesh, followed by West Bengal state in India along the Indo-Gangetic plains. Large scale natural As contamination of groundwater is found in two types of environment such as strongly reducing alluvial aquifers (ex. Bangladesh, India, China and Hungary) and inland basins in arid or semi-arid areas (ex. Argentina and Mexico). The provisional guideline of 10 ppb (0.0 l mg/l) has been adopted as the drinking water standard by World Health Organization (WHO). In the aquatic environment, the release, distribution and remobilization of As depend on temperature, redox potential, speciation, and interaction between liquid solution and solid phases. As predicaments in the environment is due to its mobilization under natural geogenic conditions as well as anthropogenic activities. Arsenic mineral is not present in As contaminated alluvial aquifer but As occurs adsorbed on hydrated ferric oxide (HFO) generally coat clastic grains derived from Himalayan mountains. As is released to the groundwater mainly by bio-remediated reductive dissolution of HFO with corresponding oxidation of organic matter. The development of strongly reductive dissolution of mineral oxides (Fe and Mn) at near-neutral pH may lead to desorption and ultimately release of As into the groundwater. As release through geochemical process is more important factor in alluvial aquifers causing As contamination rather than sources of arsenic. As is a toxin that dissolves in the bloodstream, rendering the victim susceptible to disease of the skin, bones, and also cancer of liver, kidney, gall bladder and the intestines. It is necessary to adopt highly successful technology to treat As contaminated water into the acceptable limit for human consumption. Universally accepted solutions are not developed/available even after the lapse of almost forty years since slow As poisoning identification in tens of millions of people especially in Bengal delta. The issue poses scientific, technical, health and societal problems even today.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call