Abstract

Arsenic is toxic to both plants and animals and inorganic arsenicals are proven carcinogens in humans. The oxidation of As(III) to As(v) is desirable for enhancing the immobilization of arsenic and is required for most arsenic removal technologies. The main objective of this research is to apply an Advanced Oxidation Process that combines ultraviolet radiation and hydrogen peroxide (UVC/H(2)O(2)) for oxidizing aqueous solutions of As(III). For that purpose, a discontinuous photochemical reactor (laboratory scale) was built with two 40 W tubular germicidal lamps (λ = 253.7 nm) operating inside a recycling system. The study was made beginning with a concentration of 200 μg L(-1) of As(III), changing the H(2)O(2) concentration and the spectral fluence rate on the reactor windows. Based on references in the literature on the photolysis of hydrogen peroxide, arsenic oxidation and our experimental results, a complete reaction scheme, apt for reaction kinetics mathematical modelling, is proposed. In addition, the effectiveness of arsenic oxidation was evaluated using a raw groundwater sample. It is concluded that the photochemical treatment of As(III) using H(2)O(2) and UVC radiation is a simple and feasible technique for the oxidation of As(III) to As(v).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call