Abstract

The arsenic contamination of Bangladesh groundwater involves heavy arsenic inputs to irrigated rice fields. Beside adsorption on soil colloids, iron–arsenic co-precipitation phenomena can affect arsenic retention in soils. In paddy fields of Satkhira District, Bangladesh, the study of the arsenic and iron forms in the irrigation waters and in soils at different times and distances from the irrigation well evidenced that a higher Fe/As ratio in the well water was related to a faster oxidation of Fe(II) and As(III) in water and to a close Fe–As association in soils, together with a greater accumulation of arsenic and poorly ordered iron oxides. The concentration of arsenic and of labile iron forms decreased with the distance from the well and with the depth, as well as the reversibility of arsenic binding. The fate of the arsenic added to the soils by irrigation hence resulted strongly influenced by iron–arsenic co-precipitation, depending on the Fe/As ratio in water. Irrigation systems favouring the sedimentation of the Fe–As flocks could help in protecting the rice from the adverse effects of dissolved arsenic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.