Abstract

This review explains the transport, mobility, resistance and detoxification of toxic metalloid arsenic (As) in plants. Arsenic is ubiquitously present in Earth’s crust; however, numerous human interventions such as rapid industrialization use of As-based pesticides, insecticides and discharge of industrial wastes in water bodies leads to cumulative increase in As in the environment and has become a global challenge. Arsenic exists in different organic and inorganic forms, but inorganic forms such as pentavalent arsenate (AsV) and trivalent arsenite (AsIII) are more toxic and actively taken up by plants. Its toxicity is marked by generation of reactive oxygen species (ROS) that are capable of degrading various biomolecules of the cellular systems. To keep the ROS under the limit, plants have an array of enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione-S-transferase (GST); and non-enzymatic antioxidant like ascorbate, proline, and cysteine. Contrary to this, As-hyper-accumulator plants survive under high concentration of As through the strenuous action of Asv reduction into AsIII followed by the vacuolar compartmentalization of complex or inorganic As. Hence, this review focuses on the potential sources of As in the environment, its speciation and toxicity, and tolerance strategies in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.