Abstract

Summary Although organoarsenical pesticides are no longer applied to agricultural fields in the US, their widespread use until recently, toxicity, and potential transformation to inorganic arsenic has raised serious concern. Drinking-water treatment residuals (WTRs) have been proposed as a low-cost amendment for remediation of organoarsenical pesticide contaminated soils. A long-term greenhouse study was initiated to evaluate the effect WTR application on bioaccessibility, geochemical partitioning, and speciation of the Dimethylarsinic acid (DMA). Two soils (Immokalee and Orelia series) were spiked with DMA (1500 mg As kg −1 ) and amended with an Al- and Fe-based WTR at two rates (5% and 10% by wt.). Soil sampling was done immediately after spiking (time zero) and after 0.25, 0.5, 1, and 3 (time final) years of equilibration and subjected to bioaccessibility test and sequential extraction. Results showed that compared to the unamended (no WTR) control, As bioaccessibility in the WTR-amended soils significantly ( p p

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.