Abstract

Jarosite is an important scavenger for arsenic (As) due to its strong adsorption capacity and ability to co-precipitate metal(loid)s in acid mine drainage (AMD) environments. When subjected to natural organic matter (NOM), metastable jarosite may undergo dissolution and transformation, affecting the mobility behavior of As. Therefore, the present study systematically explored the dissolution and transformation of jarosite, and the consequent redistribution of coprecipitated As(V) under anoxic condition in the presence of a common phenolic acid–gallic acid (GA). The results suggested that As(V) incorporating into the jarosite structure stabilized the mineral and inhibited the dissolution process. Jarosite persisted as the dominant mineral phase at pH 2.5 up to 60 d, though a large amount of structural Fe(III) was reduced by GA. However, at pH 5.5, jarosite mainly transformed to ferrohexahydrite (FeSO4·6H2O) with GA addition, while the principal end-product was goethite in GA-free system. The dissolution process enhanced As(V) mobilization into aqueous and surface-complexed phase at pH 2.5, while co-precipitated fraction of As(V) remained dominant under pH 5.5 condition. Result of XPS indicated that no reduction of As(V) occurred during the interaction between GA and As(V)-bearing jarosite, which would limit the toxicity to the environment. The reductive process involved that GA promoted the dissolution of jarosite via the synergistic effect of ligand and reduction, following by GA and release As(V) competing for active sites on mineral surface. The findings demonstrated that phenolic groups in NOM can exert great influence on the stability of jarosite and partitioning behavior of As(V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.