Abstract

The intrinsic hydrophilicity of metal compounds, such as copper ferrite (CuFe2 O4 ), and organic compounds, including graphene oxide (GO) and triethylenetetramine (TETA), make them promising adsorbents for heavy metals removal. The presence of lone pairs in these compounds is observed in modified polyethersulfone (PES) membranes used for the separation of arsenic (As) and total dissolved solids (TDS), including mono and divalent salts from aqueous solutions. The objective of this study was to investigate the performance of GO-TETA-CuFe2 O4 membranes for wastewater treatment applications. The membranes were characterized for their optimal mechanical strength (tensile strength) and high negative charge (zeta potential) on the surface. Separation tests were conducted at different pressures and pH levels to evaluate the membrane's effectiveness in removing contaminants. In addition, the membranes were examined for their antibacterial properties. The modified membrane exhibited superior performance compared to the control membrane, with TDS removal rates of 93.8%, As3+ removal rates of 81.2%, and As5+ removal rates of 87.9%. The contact angle of the modified membrane was reduced, resulting in an increase in pure water flux from 13.11 to 27.87 L/m2 .h. The modified membrane also demonstrated significantly higher resistance to fouling than the control membrane, with a resistance increase from 6.78×10+12 to 2.07×10+12 m-1 . This contributed to the improved separation performance of arsenic and TDS in a cross-flow setup. The results suggest that the GO-TETA-CuFe2 O4 modified membrane has great potential for use in water treatment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.