Abstract

Arsenate (As(V)) in municipal wastewater leads to a public health problem due to its contamination of natural water sources. Here, we proposed to use sewer pipe made of TiO2-doped cementitious composite (TCC) for As(V) removal from municipal wastewater. The optimum composition of TCC, the performance for As(V) removal in the simulated sewer system, and the molecular-level As(V) removal mechanisms were investigated. To obtain the optimum composition, variables were adjusted to maximize the As(V) removal using TCC. Results show that the TiO2 and water contents were the dominant factors. Simulated sewer pipes made of TCC removed As(V) from 100 μg/L to <10 μg/L, which performed better than plain cementitious composite. Moreover, extended X-ray absorption fine structure (EXAFS) analysis indicates that both precipitation and adsorption contribute to the As(V) removal by TCC, while the adsorption is more significant with a lower As(V) concentration (i.e., 1 mg/L). This is the first study evaluating the feasibility to apply TCC for As(V) removal from sewer wastewater. The optimized composition, simulation results, and molecular-level mechanism gained from this study are useful to the future design of TCC for As(V) removal, especially for sewer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.