Abstract

BackgroundThe discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides.ResultsLarge-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot). Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass.ConclusionsSeveral highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the pathogen tested. These highly active fungi are promising targets for identification and characterization of novel cell wall degrading enzymes for industrial applications.

Highlights

  • The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts

  • Effect of carbohydrate source in growth media An initial sampling of 12 phytopathogenic fungi was used to test the effect on cell wall degrading enzymes (CWDE) production for three growth media with switchgrass (SG), soybean stem (SS) or Avicel as the primary carbon source

  • The results presented here clearly illustrate that plant pathogens are promising sources in which to discover highly active CWDE that would be useful for more efficient lignocellulosic digestion

Read more

Summary

Introduction

The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The recalcitrance of lignocellulose to enzymatic degradation and the high cost of hydrolytic enzymes required for depolymerization of polysaccharides found in the plant cell wall are significant barriers to the large-scale production and commercialization of biofuels and bioproducts derived from plant biomass [1]. Type I cell walls found in non-commelinoid monocots and dicots are generally rich in xyloglucan and pectin. During cell wall maturation from a primary to secondary wall in both monocots and dicots, the amounts of xyloglucans, pectins and structural proteins decrease while the amount of xylans and lignin increase. The sugars found in cellulose and xylans are the major carbon source for fermentation of biofuels and other bioproducts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call