Abstract

In the homoacetogenic bacterium Sporomusa ovata, phenol and p-cresol are converted into α-ribotides, which are incorporated into biologically active cobamides (Cbas) whose lower ligand bases do not form axial co-ordination bonds with the cobalt ion of the corrin ring. Here we report the identity of two S. ovata genes that encode an enzyme that transfers the phosphoribosyl group of nicotinate mononucleotide (NaMN) to phenol or p-cresol, yielding α-O-glycosidic ribotides. The alluded genes were named arsA and arsB (for alpha-ribotide synthesis), arsA and arsB were isolated from a genomic DNA library of S. ovata. A positive selection strategy using an Escherichia coli strain devoid of NaMN:5,6-dimethylbenzimidazole (DMB) phosphoribosyltransferase (CobT) activity was used to isolate a fragment of S. ovata DNA that contained arsA and arsB, whose nucleotide sequences overlapped by 8 bp. SoArsAB was isolated to homogeneity, shown to be functional as a heterodimer, and to have highest activity at pH 9. SoArsAB also activated DMB to its α-N-glycosidic ribotide. Previously characterized CobT-like enzymes activate DMB but do not activate phenolics. NMR spectroscopy was used to confirm the incorporation of phenol into the cobamide, and mass spectrometry was used to identify SoArsAB reaction products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.