Abstract

Due to the limited capacity and high propagation delay of underwater communication channels, contention-based media access control (MAC) protocols suffer from a low packet delivery ratio (PDR) and a high end-to-end (E2E) delay in underwater acoustic sensor networks due to the reliance on packet retransmission for reliable data delivery. In order to address the problem of low performance, we propose a novel adaptive retransmission scheme, named ARS, which dynamically selects an optimal value of the maximum number of retransmissions, such that the successful delivery probability of a packet is maximized for a given network load. ARS can be used for various contention-based protocols and hybrid MAC protocols that have contention periods. In this paper, ARS is applied to well-known contention-based protocols, Aloha and CSMA. Simulation results show that ARS can achieve significant performance improvement in terms of PDR and E2E delay over original MAC protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call