Abstract

Exosomes have shown increasing potential as delivery vesicles for therapy, but challenges like cost/yield, drug payload, and targeting specificity still exist. Plant derived exosome-like nanoparticles have been reported as a promising substitution and exhibit biocompatibility through oral, intranasal administration; however, systemic delivery of siRNA by exosome-like nanoparticles directly isolated from plants has not been reported. Recently, we reported the control of RNA orientation to decorate human derived exosome with cell targeting ligands for specific delivery of siRNA to tumors. Here, we expand to the application of arrowtail RNA nanoparticles for displaying ligands on ginger derived exosome-like nanovesicles (GDENs) for siRNA delivery and tumor inhibition through IV administration. Cushion ultracentrifugation coupled with equilibrium density gradient ultracentrifugation were used for purifying GDENs that displayed size, density, and morphology similar to human derived exosomes. Folic acid (FA), as a ligand, was displayed on the surface of GDENs for targeted delivery of survivin siRNA to KB cancer models. In vitro gene knockdown efficacy by FA-3WJ/GDENs/siRNA complex was comparable to transfection. We observed inhibition of tumor growth on a xenograft model by intravenous administration, which reveals the potential of GDENs as an economic delivery system for siRNA.

Highlights

  • When using biosynthetic materials for cancer therapy, tumor targeting specificity is an important consideration

  • Using ginger derived exosome-like nanovesicles (GDENs), we further confirm that exosome-like vesicles can be engineered via ligand-displaying arrowtail RNA nanoparticles to deliver siRNA for tumor suppression intravenously

  • It was observed that siRNA loaded GDENs were able to significantly reduce survivin expressions within the tumor environment compared to both treatment scramble control (FA-3WJ/GDENs/scramble) and the treatment group without targeting ligand (3WJ/GDENs/sisurvivin) (Fig. 8B)

Read more

Summary

Introduction

When using biosynthetic materials for cancer therapy, tumor targeting specificity is an important consideration. Using ginger derived exosome-like nanovesicles (GDENs), we further confirm that exosome-like vesicles can be engineered via ligand-displaying arrowtail RNA nanoparticles to deliver siRNA for tumor suppression intravenously. NTA results indicated no significant change in particle sizes between GDENs and GDENs after loading, while treating the RNA with “Loading reagent only” showed completely different patterns on size distribution and particle concentration (Fig. 3D).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call