Abstract
Asset price dynamics are taken to be accumulations of surprise jumps in the logarithm of prices. A Markov pure jump model is formulated on making variance gamma parameters deterministic functions of the price level. Estimation is done by matrix exponentiation of the transition rate matrix for a continuous time finite state Markov chain approximation. The motion is decomposed into a space dependent drift and a space dependent martingale component. Though there is some local mean reversion by and large the dynamics estimated is that of the momentum type. Risk compensation is seen by a linear relation between the exponential variation and measure distorted variations for the bid and ask prices of two price economies. Estimations are conducted for the S&P 500 index (SPX), the exchange traded fund for the financial sector (XLF), J. P. Morgan stock prices (JPM), the ratio of JPM to XLF and the ratio of XLF to SPX.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.