Abstract

This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.

Highlights

  • The heart is the key center of the blood circulation in fish, reptiles, birds, and mammals, an organ contracts autonomously and rhythmically, and functioning in conjunction with an extensive network of blood vessels to supply all cells and organs with oxygen and nutrients for serving their physiological function

  • The answer is yes, and the mission of the current review is to present a short and comprehensive analysis of what is currently known about ischemia- and reperfusion-induced arrhythmias and their mechanisms, focusing on changes in shapes and waves in action potential (AP) and electrocardiogram (ECG), respectively, in animal models and human beings

  • The resting transmembrane potential in an intact cardiac cell is about 85–90 mV negative to the exterior, and the move of Na+ into the resting cell leads to the change of the membrane potential and the propagation of the cellular AP

Read more

Summary

Arpad Tosaki*

This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The review summarizes some important mechanisms of ventricular arrhythmias in the ischemic/ reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.

THE HEART AND ARRHYTHMIAS
THE ACTION POTENTIAL
THE ECG AND INHERITED SYNDROMES
Clinical Management of Prolonged QT interval
Reactive Oxygen Species
GENETIC ORIGIN OF REPERFUSIONINDUCED ARRHYTHMIAS
CONCLUSION
Findings
LIMITATION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call