Abstract

Atrial tachycardias (ATs) frequently develop after a surgical Maze procedure. We aimed to elucidate the electrophysiologic mechanisms and their arrhythmogenic substrates of these ATs. We retrospectively reviewed 20 patients (14 females, mean age of 55.5 ± 8.6 years) with post-Maze ATs who underwent high-resolution mapping at three institutions. The slow conduction areas, reentry circuits, voltage signals, complex electrograms, and their correlation with the surgical incisions and lesions placed in the surgical Maze procedures were analyzed. Thirty-six ATs with a mean cycle length of 260.0 ± 67.6 ms were mapped in these patients. Among them, 22 (61.1%) were anatomical macro-reentrant ATs (AMAT), 12 (33.3%) non-AMATs (localized ATs), and 2 (5.6%) focal ATs, respectively. Epicardial conduction bridges were observed in 6/20 (30.0%) patients and 7/36 (19.4%) ATs. Different arrhythmogenic substrates were identified in these ATs, including slow conduction regions within the previous lesion areas or between the incisions and anatomical structures, the prolonged activation pathways caused by the short lesions connecting the tricuspid annulus, and the circuits around the long incisions and/or lesions. Reentry is the main mechanism of the post-Maze ATs. The pro-arrhythmic substrates are most likely caused by surgical incisions and lesions. The slow conduction regions and the protected channels yielded from these areas are the major arrhythmogenic factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call