Abstract
In the modern clinical diagnosis, the 12-lead electrocardiogram (ECG) signal has proved effective in cardiac arrhythmias classification. However, the manual diagnosis for cardiac arrhythmias is tedious and error-prone through ECG signals. In this work, we propose an end-to-end deep neural network called attention-based Res-BiLSTM-Net for automatic diagnosis of cardiac arrhythmias. Our model is capable of classifying ECG signals with different lengths. The proposed network consists of two parts: the attention-based Resnet and the attention-based BiLSTM. At first, ECG signals are divided into several signal segments with the same length. Then multi-scale features are extracted by our attention-based Resnet through signal segments. Next, these multi-scale features from a same ECG signal are integrated in chronological order. In the end, our attention-based BiLSTM classifies cardiac arrhythmias according to combined features. Our method achieved a good result with an average F1score of 0.8757 on a multi-label arrhythmias classification problem in the First China ECG Intelligent Competition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.