Abstract

The closure of plastic zones developed ahead of the tips of two unequal hairline arc cracks in an unbounded elastic-perfectly plastic plate is studied. The cracks lie along the circumference of one and the same circle. The rims of the cracks are opened in mode I type deformation by biaxial tension applied at infinity, and consequently plastic zones develop ahead of the tips of the cracks. The tension is increased to such an extent that the plastic zones of both cracks, lying adjacent to each other, are coalesced. To prevent the cracks from further opening, the rim of the plastic zone is subjected to a uniform, constant compressive yield-point stress. The problem is solved using the complex variable technique and the principle of superimposition of the stress intensity factors. The Dugdale hypothesis is used to determined the length of the plastic zones developed. The behavior of each of the parameters, viz. the length of the plastic zone, the crack length, and the intercrack distance effecting the crack closure, is investigated and reported graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.