Abstract

A numerical analysis of the phase-matching conditions during the incidence of one or two counterpropagating laser beams on an ordered array of single-walled carbon nanotubes (CNTs) is performed. The conditions for the generation of slow surface plasmon waves of the terahertz (THz) and far infrared range propagating along the nanotubes of the irradiated array are determined. It is shown that the plasmon frequency can be controlled by changing the angle of incidence of laser radiation on the structure under study. Thus, it is possible to fulfill the condition of longitudinal resonance, in which each array nanotube is a dipole antenna radiating at the plasmon frequency. In this case, the array forms a system of a large number of in-phase emitters, which allows increasing the efficiency of conversion of laser radiation into THz radiation in comparison with a single nanoantenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.