Abstract
An arrayed ultrasonic wind measurement method based on the BNF-FLOC-MUSIC algorithm is proposed to address the issue of low measurement accuracy and poor noise suppression capabilities of current array wind measurement methods in impulse noise backgrounds. The proposed method utilizes an array structure consisting of one transmitting ultrasonic sensor and five receiving sensors. Continuous sampling is performed leveraging this structure, and the received array signals are processed using a bounded nonlinear function (BNF). Subsequently, the fractional lower-order covariance (FLOC) operations are applied to suppress impulse noise’s influence further. Finally, combining these steps with the Multiple Signal Classification (MUSIC) algorithm enables high-precision wind speed and direction measurement. The effectiveness and superiority of the method are examined through simulation experiments and actual measurement systems, and the errors of wind speed and wind direction angle in actual measurement are 1.2% and 2°, respectively, which satisfy the design requirements of the ultrasonic anemometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.