Abstract

In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R2 = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%.

Highlights

  • There is a great interest in automating the flow measurements and total milk production in milking of goats

  • A floating device containing a magnet is placed, so that the reading of the Hall Effect sensors will vary as the float raises its height, as a result of the volume increase (Figure 1)

  • A multiple regression analysis was performed with the data of the first batch of experiments, in which it was found that the applied pretreatment was able to neutralize the effect that a heat treatment of the magnet has on the magnetic field, resulting not a significant variable

Read more

Summary

Introduction

There is a great interest in automating the flow measurements and total milk production in milking of goats. One of the most widely used meters is WB Mini-Test (Tru-Test), which operates by collecting a cumulative proportion (about 1/20) of the milk yield from an animal in a cylindrical container, with a capacity of approximately 300 mL, and the user performs a visual reading of a graduated scale to obtain an estimate of the total milk yield. In goats, this equipment allows to carry out measurements up to 5.5 L of milk yield per animal. In practice few commercial goat farms have implemented automatic milk recording systems due to the high acquisition costs of the equipment [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.