Abstract

Using a new microelectrode array implanted into the cranial window employing a new stimulation protocol, we investigated the effects of the implanted electrode arrays on both motor map plasticity and neural regeneration in a rodent model of stroke. Rats were pretrained on single-pellet retrieval task, then received focal ischemic infarction and microelectrode arrays implantation. Rats in the cortical stimulation (CS) group received daily electrical stimulation (1 hour each day) for 14 days whereas animals in the no stimulation (NS) group did not receive electrical stimulation and only underwent motor mapping. Behavior data and residual electrophysiological mapping on stimulation days 2, 5, 8, 11, and 14 were statistically compared. Neural reorganization in pathological with glial fibrillary acidic protein and microtubule-associated protein-2 was performed. Rats in CS group showed greater increases in reaching accuracy and significantly decreased in motor threshold than rats in NS group. Immunohistochemical study has shown that array focal CS suppressed inflammatory response, and enhanced dendritic sprouting in the peri-infarction cortex. The present findings support the viability of epidural CS with microelectrode arrays for enhancing motor function after stroke and monitoring the neural reorganization of residual electrophysiological mapping after motor cortex injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.