Abstract

BackgroundComparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorogenesis, species detection and identification, and functional genomics studies among related organisms. Array CGH has also been used to infer phylogenetic relatedness among species or strains. Although the use of the entire genome can be seen as a considerable advantage for use in phylogenetic analysis, few such studies have questioned the reliability of array CGH to correctly determine evolutionary relationships. A potential flaw in this application lies in the fact that all comparisons are made to a single reference species. This situation differs from traditional DNA sequence, distance-based phylogenetic analyses where all possible pairwise comparisons are made for the isolates in question. By simulating array data based on the Neurospora crassa genome, we address this potential flaw and other questions regarding array CGH phylogeny.ResultsOur simulation data indicates that having a single reference can, in some cases, be a serious limitation when using this technique. Additionally, the tree building process with a single reference is sensitive to many factors including tree topology, choice of tree reconstruction method, and the distance metric used.ConclusionsWithout prior knowledge of the topology and placement of the reference taxon in the topology, the outcome is likely to be wrong and the error undetected. Given these limitations, using CGH to reveal phylogeny based on sequence divergence does not offer a robust alternative to traditional phylogenetic analysis.

Highlights

  • Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorogenesis, species detection and identification, and functional genomics studies among related organisms

  • Array CGH for two color array platforms uses DNA samples from a reference individual and a test individual, each labelled with a different fluorescent dye, and competitively hybridizes them to an array composed of immobilized DNA fragments from the reference individual [5,6,7,8]

  • The output tree differed from the input tree from between 0 to 8 steps (SymD) or 0 to 2 for distance D1, with scores growing progressively worse based on the choice of reference taxon

Read more

Summary

Introduction

Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorogenesis, species detection and identification, and functional genomics studies among related organisms. This technique is attractive because microarrays made from genome sequence or even random DNA fragments from just one individual can be used to study the phylogenetic relationships among many closely related species. Array CGH (aCGH) for two color array platforms uses DNA samples from a reference individual and a test individual, each labelled with a different fluorescent dye, and competitively hybridizes them to an array composed of immobilized DNA fragments from the reference individual [5,6,7,8] This technique has primarily been used to characterize gene copy number changes and deletion events and has been applied extensively in the study of human tumorogenesis and bacterial pathogens [9,10,11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.