Abstract

The area surrounding the dismissed mine of Sos Enattos (Sardinia, Italy) is the Italian candidate site for hosting Einstein Telescope (ET), the third-generation gravitational wave (GW) observatory. One of the goals of ET is to extend the sensitivity down to frequencies well below those currently achieved by GW detectors, i.e. down to 2 Hz. In the bandwidth [1,10] Hz, the seismic noise of anthropogenic origin is expected to represent the major perturbation to the operation of the infrastructure, and the site that will host the future detector must fulfill stringent requirements on seismic disturbances. In this paper we describe the operation of a temporary, 15-element, seismic array deployed in close proximity to the mine. Signals of anthropogenic origin have a transient nature, and their spectra are characterized by a wide spectral lobe spanning the [3,20] Hz frequency interval. Superimposed to this wide lobe are narrow spectral peaks within the [3,8] Hz frequency range. Results from slowness analyses suggest that the origin of these peaks is related to vehicle traffic along the main road running east of the mine. Exploiting the correlation properties of seismic noise, we derive a dispersion curve for Rayleigh waves, which is then inverted for a shallow velocity structure down to depths of approx 150 m. This data, which is consistent with that derived from analysis of a quarry blast, provide a first assessment of the elastic properties of the rock materials at the site candidate to hosting ET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.