Abstract

In the unidimensional unfolding model, given m objects in general position on the real line, there arise 1 + m(m − 1)/2 rankings. The set of rankings is called the ranking pattern of the m given objects. Change of the position of these m objects results in change of the ranking pattern. In this paper we use arrangement theory to determine the number of ranking patterns theoretically for all m and numerically for m ≤ 8. We also consider the probability of the occurrence of each ranking pattern when the objects are randomly chosen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.