Abstract

The structure of 14-protofilament microtubules reassembled from dogfish shark brain tubulin was analyzed by high resolution electron microscopy and optical diffraction. The simultaneous imaging of the protofilaments from near and far sides of these tubules produces a moiré pattern with a period of approximately 96 nm. Optical diffraction patterns show that the 5-nm spots that arise from the protofilaments for the two sides of the tubule are not coincident but lie off the equator by a distance of 1/192 nm-1. These data provide evidence that in reassembled microtubules containing 14 protofilaments, the protofilaments are tilted 1.5 degrees with respect to the long axis of the tubule, giving a left-handed superhelix with a pitch of 2.7 micron. The hypothesis is that the tilt of the protofilaments occurs to accommodate the 14th protofilament. It is determined that when the 14th protofilament is incorporated, the 3-start helix is maintained, but the pitch angle changes from 10.5 degrees to 11.2 degrees, the angle between protofilaments measured from the center of the microtubule changes by 2 degrees, and the dimer lattice is discontinuous. These observations show that the tubulin molecule is sufficiently flexible to accomodate slight distortions at the lateral bonding sites and that the lateral bonding regions of the alpha and beta monomers are sufficiently similar to allow either alpha-alpha and beta-beta subunit pairing or alpha-beta subunit pairing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.