Abstract

AbstractThe test of the autoclave temperature field is very important for the quality control of the civil aircraft composite material manufacturing. The existing test methods mainly arrange thermocouples on the front and tail sections and geometric center of the autoclave for multi-point distributed measurement. However, the reason why temperature tests are mainly carried out on the front and tail sections, the detailed sensor arrangements, as well as the requirements for the local layout of the thermocouple measuring junctions are still unclear. A three-dimensional steady-state numerical simulation of the autoclave temperature field is performed in this article. The discrete distribution tests showed that the actual temperature distribution is consistent with the numerical simulation results with the effects of the front and rear rectifier plates considered. The low-temperature area was observed in the tank door and top, whereas the high-temperature area was distributed in the tank tail and bottom. The flow field near the rectifier plates on both sides was more complicated as compared with that in other regions. The microstructure did not significantly affect the overall temperature field in the tank, whereas it exerted a greater effect on the local temperature field. The temperature distribution of the entire autoclave can be represented by the typical measurement points. Additionally, local layout requirements of test sensors are proposed, which can provide a basis for determining the point for the autoclave temperature field test.KeywordsAutoclaveNumerical simulationTemperature field testTest point

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.