Abstract

This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch bands, we obtain quantitative estimates of the relative amounts of the previously reported four subpopulations of water structures coexisting in a variety of aqueous solutions. Where solvatochromic dyes can measure the properties of solutions of non-ionic polymers, the results correlate well with ATR-FTIR measurements. In protein solutions to which solvatochromic dye probes cannot be applied, NMR (nuclear magnetic resonance) spectroscopy was used for the first time to estimate the hydrogen bond donor acidity of water. We found strong correlations between the solvent acidity and arrangement of hydrogen bonds in aqueous solutions for several globular proteins. Even quite similar proteins are found to change water properties in dramatically different ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.