Abstract

A set of Belleville springs integrated into an endplate plays a key role in a proton exchange membrane fuel cell (PEMFC) stack, which makes the applied assembly force smoother, resulting from the absorbed vibration and thermal expansion. The appropriate arrangement of Belleville springs is important in PEMFC stack design. The aim of this study is to establish an equivalent beam model to optimize the numbers and positions of Belleville springs to minimize endplate deformation. Based on this, a finite element analysis (FEA) model of the PEMFC stack is proposed to further optimize the cross-sectional shape of the endplate. For the endplate with two, three and four groups of Belleville springs, its optimal positions correspond to 0.17lin, 0.27lin and 0.5lin (lin is the equal distance between steel belts). In addition, the low thickness should be 2/3 of the high thickness of the curved endplate for a uniform contact pressure distribution as well as the high-volume-specific power. However, the curvature radius of the endplate arc is negative to the uniformity of the contact pressure distribution, and particularly the internal cells of the PEMFC stack. This study provides a design direction for endplates combined with Belleville springs in large fuel cell stacks clamped with steel belts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.