Abstract
Spectroscopic effects associated with the superperiodic surface structure have been observed in Au(1 1 1) vicinal surfaces and nanostructured systems. In the vicinal Au(23 23 21) surface, high resolution angle resolved photoemission spectroscopy shows the opening of several gaps in the surface band structure, whereas scanning tunneling spectroscopy reveals the energy dependence of the electronic density. These combined spectroscopic data allow to determine the reconstruction potential by deducing their first Fourier components. We also demonstrate that due to the peculiar growth on this Au vicinal surface, we can obtain a self-assembled superlattice of triangular Ag islands. The high ordering of the nanostructures leads to homogenous electronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.